A magic sequence of length n is a sequence of integers x0 . . xn-1 between 0 and n-1, such that for all i in 0 to n-1, the number i occurs exactly xi times in the sequence. For instance, 6,2,1,0,0,0,1,0,0,0 is a magic sequence since 0 occurs 6 times in it, 1 occurs twice, ... – CSPLib

1 require 'rubygems' 2 require 'gecoder' 3 4 # Solves the magic sequence problem. 5 class MagicSequence 6 include Gecode::Mixin 7 8 # n is the length of the sequence. 9 def initialize(n)10# The i:th variable represents the value of the i:th element in the 11 # sequence. 12 sequence_is_an int_var_array(n, 0...n) 13 14 # The basic requirement to qualify as a magic sequence. 15 n.times{ |i| sequence.count(i).must == sequence[i] } 16 17 # The following are implied constraints. They do not affect which 18 # assignments are solutions, but they do help prune the search space 19 # quicker.2021 # The sum must be n. This follows from that there are exactly n elements and 22 # that the sum of all elements are the number of occurrences in total, i.e. 23 # the number of elements. 24 sequence.sum.must == n 25 26 # sum(seq[i] * (i-1)) must equal 0 because sum(seq[i]) = n as seen above 27 # and sum(i*seq[i]) is just another way to compute sum(seq[i]). So we get 28 # sum(seq[i] * (i-1)) = sum(seq[i]) - sum(i*seq[i]) = n - n = 0 29 sequence.zip((-1...n).to_a).map{ |element, c| element*c }.sum.must == 03031 branch_on sequence, :variable => :smallest_degree, :value => :split_max 32 end 33 34 def to_s 35 sequence.values.join(', ') 36 end 37 end 38 39 class Array40# Sums all the elements in the array using #+ . 41 def sum 42 inject{ |sum, element| sum + element } 43 end 44 end 45 46 puts MagicSequence.new(500).solve!.to_s

496, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

This might be a bit boring problem to use constraint programming on as the pattern for sequences is obvious for n >= 7, making it trivial to construct an efficient algorithm.